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• The annual sale of e-bikes worldwide is predicted to grow from 3.3 million

in 2016 to nearly 6.8 million in 2025, with a compound annual growth rate

of 8.2%.

• In 2016, approximately 2 million e-bikes were sold in Europe and 210

million e-bikes were used daily in China.

• According to the statistical annual report of China’s road traffic accidents in

2017, the numbers of e-bike crashes in 2011 and 2016 were 10,347 and

17,747, respectively, and the number of deaths increased by 71.5% in the

five years. In addition, the number of e-bike crashes was 8.2 times larger

than that of bicycle crashes and 5.4 times larger than that of pedestrian

crashes.

• In Switzerland, the number of e-bikes sold increased from about 3,000 in

2006 to over 75,000 in 2016, and between year 2011 and year 2016, the

numbers of injured e-bikers in police reports have more than tripled to a

total of almost 700 in 2016
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Data Variable Description Mean S.D.

Road network 

Road mileage
The total length of roads (km)

89.89 
6595.1

7 

Road density
Road length per unit area (km/ 

km2) 4.57 2.90 

Number of intersections Total number of intersections 116.51 92.91 

Density of intersections
Number of intersections

per unit area (/km²)
9.78 8.33 

Percentage of 4-legged 

intersections

Proportion of 4-legged 

intersections to total intersections 

(%)

42.15 11.92 

Land use

Number of 

metro stations

Number of metro stations in 

the administration unit
1.70 1.81 

Urban or suburban

Location of the administration unit  

(0 means suburban while 1 

denotes urban)

0: 63.85%

1: 36.15%

Socio-economic 

Area Area of administration unit (km²) 30.77 33.26

Number of households
Registered number of households 

(×10³)
24.56 12.43 

Registered population
Registered number of population 

(×10³)
63.59 33.04 
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Spatial weight matrix can take many different forms. In this study, the reciprocal

of distance between centroids is used as the spatial weight matrix of the CAR

model. This weight matrix is based on the assumption that the spatial correlation

among units increases with the decrease of distance, which was basically in

accordance with the actual situation. The following is an example of the weight

matrix for a three-unit dataset, where 𝑑𝑖𝑗 denotes the distance between centroid of

unit 𝑖 and unit j.

𝑊 =

0 1/𝑑12 1/𝑑13
1/𝑑21 0 1/𝑑23
1/𝑑31 1/𝑑32 0

◆Model 1: Area is considered as an independent variable.

The logarithm was used as a function to link the expectation of Yi with

explanatory variables as:

𝑙𝑛 𝜃𝑖 = 𝛽0 + σ𝑚=1
𝑀 𝛽𝑚𝑥𝑖𝑚 + 𝑒𝑖 +𝜙𝑖

where 𝛽0 denotes the intercept; M is the total number of independent

variables; 𝑥im is the value of the 𝑚th independent variable for unit 𝑖; ei was used to

account for the unobserved heterogeneity for unit 𝑖.

METHODOLOGY

◆ PLN CAR Models

In order to take the potential spatial correlations for e-bike crashes into

consideration, three Poisson log-normal Conditional Autoregressive (PLN CAR)

models were developed. It assumed that the crash frequency followed the Poisson

distribution as:
ȁY𝑖 𝜃𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜃𝑖

where Yi is the crash frequency for unit 𝑖; and θi denotes the expected crash

frequency for unit 𝑖.
A Conditional autoregressive (CAR) model that captures the spatial dependence of

crashes in adjacent units is appropriate given the research objective and the data.

Based on the Bayesian framework, the prior conditional distribution can be

defined as follows:

◆Model 2: Area is regarded as an exposure variable.

The area variable is transformed into a logarithmic scale and its parameter was set

to 1.0. Area in this form is able to emphasize its impact on crash prediction and

the influence of different unit areal size can be well captured in this model. Other

independent variables should be selected carefully to avoid the multicollinearity

with the area.

The logarithm link function in Model 2 was changed to:

𝑙𝑛 𝜃𝑖 = 𝛽0 + 𝑙𝑛 𝑎𝑟𝑒𝑎𝑖 +
𝑚=1

𝑀

𝛽𝑚𝑥𝑖𝑚 + 𝑒𝑖 + 𝜙𝑖

where 𝑎𝑟𝑒𝑎𝑖 is the area of unit 𝑖; Other variables have the same meaning with

Model 1.

◆Model 3: Area is excluded as a variable in the model.

Other variables are normalized by dividing them with area. In this way, all the

other variables in the research unit are converted into the corresponding variables

per unit area. But some variables such as the percentage of 4-legged intersections

were not required to divide by area because they were independent of area.

Therefore, the results of hot-zone identification would not be influenced by

different area scales.

The logarithm link function can be defined as:

𝑙𝑛
𝜃𝑖

𝑎𝑟𝑒𝑎𝑖
= 𝛽0 +

𝑚=1

𝑀 𝛽𝑚𝑥𝑖𝑚
𝑎𝑟𝑒𝑎𝑖

+ 𝑒𝑖 + 𝜙𝑖

where variables have the same meanings as of Model 2.

MODEL COMPARISON AND ASSESSMENT

Mean absolute deviance (MAD), mean square prediction error (MSPE), and

deviance information criterion (DIC) were utilized to evaluate the prediction and

fitting performance of the models. The definitions of MAD and MSPE were as

follows:

MAD =
1

𝑛


∀𝑖

ȁ𝑌𝑖
𝑝𝑟𝑒𝑑

− 𝑌𝑖
𝑜𝑏𝑠ȁ

MSPE =
1

𝑛


∀𝑖

ቀ𝑌𝑖
𝑝𝑟𝑒𝑑

− ൯𝑌𝑖
𝑜𝑏𝑠 2

where 𝑌𝑖
𝑜𝑏𝑠 denotes the observed crash number for unit 𝑖 while 𝑌𝑖

𝑝𝑟𝑒𝑑
is the

predicted crash number for unit 𝑖. Clearly, lower values of MAD and MSPE are

preferred.

DIC is a Bayesian measure of model fitting and complexity. Smaller DIC is

preferred, and it can be defined is as follows:

DIC = 𝐷 𝜃 + 𝑝𝐷

where 𝐷 𝜃 denotes the Bayesian deviance of the estimated parameter,

and 𝐷 𝜃 is the posterior mean of 𝐷 𝜃 .𝐷 𝜃 denotes a measure of model

fitting, 𝑝𝐷 can be viewed as the effective number of parameters, which

indicates the complexity of the model.

Model 1 Model 2 Model 3

Mean S.D. 95% BCI Mean S.D. 95% BCI Mean S.D. 95% BCI

Intercept 2.06a 2.00 (0.22,3.88) 0.38 a 0.53 (0.20,0.70) 0.89 0.36 (0.48,1.32)

Road density 0.76 0.82 (0.01,2.04) 0.28 0.21 (0.13,0.37) 0.20 0.15 (0.07,0.30)

Density of 

intersections
— — — -0.02 0.03 (-0.05,0) -0.03 0.03 (-0.06,-0.01)

Percentage of 

4-legged 

intersections

— — — 0.02 0.02 (0.01,0.04) 0.02 0.01 (0.01,0.04)

Number of  

household
— — — 0.02 a 0.02 (0.01,0.03) 0.08 a 0.06 (0.04,0.12)

Registered 

population
0.01 0.02 (0,0.02) — — — — — —

Number of 

metro 

stations

— — — 0.11 0.09 (0.02,0.20) 0.21 0.07 (0.14,0.28)

Urban or 

suburban
-0.41 a 0.73

(-0.68,-

0.08)
1.01 0.45 (0.63,1.43) 0.59 0.34 (0.20,1)

Area 0.01 a 0.02 (0,0.02) — — — — — —

MAD 3.41 0.82 1.01

MSPE 21.43 1.11 1.63

DIC 5872.15 3316.82 3337.31

a : Significant at 90% BCI.

S.D.: standard error.

Based on the MAD, MSPE and DIC values, the best model was Model 2

(MAD=0.82, MSPE=1.11, DIC=3316.82), followed by Model 3 (MAD=1.01,

MSPE=1.63, DIC=3337.31). Thus, Model 2 outperformed all the other models.

PSI was utilized as the performance measure to rank units with promise. In

order to achieve a reliable result, the PSI estimates of the three models were

aggregated separately. All units in the study area were classified into three

categories based on the PSIs: hot, warm and cold zones. Hot zones refer to

those with a top 10% PSI, warm zones are defined as the ones with a PSI

between 0 and top 10%, and the remaining zones with PSI values less than 0

could be treated as the cold zones. 10% was commonly used as the threshold in

many studies. The spatial distribution of units by this zone category is

illustrated in Figure 1.

FIGURE 1 Crash hot zones for e-bikes in three models.

Model 1 Model 2 Model 3

✓ Based on the MAD, MSPE and DIC values, model 2 outperformed all the

other models;

✓ Interpretation of Explanatory Variables: road density, number of households,

number of metro stations and urban or suburban were positively associated

with e-bike crashes;

✓ When the area scales of units vary greatly, area should be considered as an

exposure variable in the model to obtain better model performance.

The blue line was the highway network surrounding most of the

municipality of Shanghai, while the ring in maroon depicted the Outer Ring

Expressway. The highways can be used to roughly distinguish the suburban

area, urban fringe area and urban area in Shanghai. Areas in red were those

administrative units identified as hot zones, which meant their overall safety

level for e-bike crashes was relatively worse than the average level of all areas.

Less attention should be paid to the areas in yellow since their safety

performance were better, while the overall safety level for areas in green were

best in those areas.

In Model 2, the administrative units classified as hot zones mainly

concentrated in the urban fringe area (i.e., within the highway network in blue,

but outside the maroon line), which was in accordance with the findings of

Wang and Zhou. Several administrative units adjacent to the outer ring highway

and urban administrative units also had serious e-bike safety problems. In

addition, hot zones for e-bike crashes mainly located in the western of

Shanghai. For Model 1, large proportion of the units were identified as warm

zones or hot zones, which was not reasonable in practice. In Model 3, hot zones

mainly located in the urban area with small administrative units.


